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The coupled-bunch instability driven by the resistive wall impedance is studied for multi-
bunch configurations with a gap in the uniform filling. Measurements of the instability

thresholds performed at the NSLS-II storage ring are compared with the predictions of a
general theoretical eigenanalysis based on the known formulas of the complex frequency
shifts for the uniform multibunch configuration case.
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1. Introduction

The design of modern storage rings, with their goal to accumulate high average

beam currents, requires detailed studies to minimize detrimental effects on the beam

quality driven by short- and long-range wakefields, produced by the electromagnetic

interaction of the circulating beam with the storage ring components. The afero-

mentioned studies do not prevent, however, plans for operation above the wakefields

driven instability current thresholds. Multibunch operations, for example, above

threshold is made possible by the use of feedback systems, and the determination of

the most stable multibunch configuration is of crucial importance for their efficient

use, especially in cases where the multibunch filling pattern deviates significantly

from the uniform one.

In this contribution we discuss measurements of the coupled-bunch instability

driven by the resistive wall impedance in the NSLS-II storage ring. The measure-

ments of the instability thresholds, performed with a varying gap in the uniform

filling, are compared with the theoretical predictions of the eigenanalysis developed

in1, where it is shown that the coupled-bunch instability threshold for an arbitrary

filling pattern is determined by the solution of an eigenvalue problem based on the

known formulas of the complex frequency shifts for the uniform filling pattern case.
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2. Resitive Wall Impedance Budget of NSLS-II

For the resistive wall impedance of one component of the storage ring we use the

standard thick wall formulaa

Z⊥

1 (ω) = (1 − isgn(ω))
Z0s0L

√

s0c|ω|
2πωb4

, s0 =
( 2b2

Z0σc

)1/3

, (|ω| ≤ c/s0). (1)

where Z0 is the impedance of free space and c the speed of light, and where L, σc

and b are the length, conductivity and half aperture of the impedance structure

respectively. The conductivities of the material of the storage ring components

are shown in Table 1, and the relevant contributions to the vertical resistive wall

impedance budget are shown in Table 2, where a distinction is made between con-

tributions from arcs and straigth sections. In Table 2 the different elements have

the following meaning: chamber (CH), fast corrector (FC), in-vacuum undulator

(IVU), damping wiggler (DW). The contribution from N elements, each of length

Table 1. Thermal conductivity of resistive wall components

Material Symbol σc(MS/m)

Stainless steel SS 1.35
Alluminum Al 31.6
Copper Cu 54
Non-Evaporable Getter NEG 2
Inconel Inc 0.775
Titanium Ti 1.67

Li, is weighted by

β̄y,i =
[ 1

Li

∫ si+Li/2

si−Li/2

ds′

βy(s′)

]−1

, i = 1, · · · , N, (2)

where si is the ring location of the center of the element. Eq.(2) reduces to the

standard relation β̄y,C = C/(2πνy) for a global impedance distributed along the

ring circumference C.

Eliminating s0 in Eq.(1), we notice that Z1
⊥ can be rewritten in the form

Z⊥

1 (ω) = (1 − isgn(ω))

√

2Z0c|ω|
2πω

L√
σcb3

. (3)

We thus define the total average impedance Z̄⊥
1 as

Z̄⊥

1 (ω) = (1 − isgn(ω))

√

2Z0c|ω|
2πω

K, (4)

aThe use of Eq.1 is justified by the thickness of the storage ring components and by the fact that
the lowest frequency contribution to the coupled-bunch instability threshold is given by ReZ⊥

sampled at (1 − q)ω0, where ω0 is the angular revolution frequency and q the fractional part of

the betatron tune νβ = ωβ/ω0, where ωβ is the betatron frequency.



3

where

K =
∑

i

αi, αi =
β̄y,i√

σc,iβ̄y,Cb3
i

. (5)

The last column of Table 2 shows the contributions in percentage of the relevant

impedance elements, contributing to 90% of the vertical resistive wall impedance

budget. Fig.1 shows the beta functions of two cells of the NSLS-II storage ring2,

which adopts a DBA lattice with 30 periods, thus dividing the storage ring in 30

cells. The two cells shown in Fig.1 correspond to one super-period of the lattice.
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Fig. 1. One superperiod of the NSLS-II DBA lattice consisting of two cells with short and long
straigth sections.

3. Coupled-bunch Instability for Arbitrary Fillings

The coupled-bunch instability for arbitrary filling patterns has been discussed in the

literature with various degrees of approximation3,4,5. In this contribution we apply

the general analysis developed in1, where starting from a system of M−coupled

Vlasov equations governing the evolution of the phase space densities Ψm associated

with the m-th bunch (m = 0, ...,M − 1), it is shown that the stability analysis

is reduced to the formulation of an eigenvalue problem defined by the complex

frequency shifts of the uniform filling pattern case. The numerical solution of the

eigenvalue problem, via the calculation of the eigenvalue with the largest growth rate

(largest imaginary part), allows the determination of the coupled-bunch instability

threshold by equating the fastest growth time to the radiation damping time.
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Table 2. Main contributions to the vertical resistive wall impedance.

Contribution from arcs:

Element Material L(m) β̄y(m) b(mm) α/K(%)

CH1 Al 536.4 7.8 12.5 35
CH2 SS 11.5 7.8 12.5 3.6

FC Inc 5.8 7.8 12.5 2.4

Contribution from straight sections:

Cell Element Material L(m) β̄y(m) b(mm) α/K(%)

1a CH Al 5.36 7 12.5 2.2a

1b FC Inc 0.37 8.3 12.5 4.9b

3 IVU Cu 4.2 2.5 3.2 4.0
4 IVU Cu 3.46 3.8 3.4 4.2

6c CH Al 3.96 8 12.5 1.1c

8d DW NEG 7.5 4 7.25 16.7d

10 IVU Cu 3.64 3.8 3.9 2.9
11 IVU Cu 4.2 2.5 3.3 3.8
12 IVU Cu 3.47 4 5.7 1
16 IVU Cu 3.75 4 3.1 6.6
17 IVU1 Cu 2.13 3 3.4 2.0
17 IVU2 Cu 2.13 3 3.7 1.6
19 IVU Cu 1.67 2.5 2.8 2.5

Note: a Including the contribution from Cells 9,13,15,25,27 and 29,
which are identical to Cell 1. b Total contribution from all Cells,
which have two FCs each. c Including the contribution from Cells 14,
20 and 26, which are identical to Cell 6. d Including the contribution
from Cells 18 and 28, which are identical to Cell 8.

3.1. Eigenvalue Analysis

The arbitrary multibunch configuration is defined by M equidistant bunches with

Nm particles (m = 0, ..,M − 1), circulating in the storage ring and satisfying the

condition M ≤ h, where h is the number of rf-buckets, with the reference particles of

the bunches separated by the distance d = C/M , where C is the ring circumference.

The eigenvalue equation determining the transverse stability of the multibunch

configuration is given by Eq.(46) of1

(B − ΩI)a = 0, Bµµ′ =
ΩU

µ

NM

M−1
∑

m=0

Nmei2πm(µ′
−µ)/M , (6)

where a = [a0, .., aM−1]
T , and ΩU

µ are the eigenvalues of the uniform filling pattern

case (Bµµ′ = ΩU
µ if µ′ = µ, 0 otherwise), and are given by

ΩU
µ = −i

eNMc

2(E0/e)T 2
0 ωβ

+∞
∑

p=−∞

∣

∣

∣
λ̃
(

pMω0 + µω0 + ωβ

)

∣

∣

∣

2

Z̄⊥

[

pMω0 + µω0 + ωβ

]

, (7)
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where
∑M−1

m=0 Nm = NM = NT is the total number of particles in the filling pattern,

with N the number of particles per bunch in the uniform filling pattern case, ω0 =

2π/T0, where T0 is the revolution period, ωβ is the betatron frequency, e is the

electron charge and E0 is the energy of the reference particle in electron volts. λ̃(ω)

is the Fourier transform of the longitudinal distribution density, assumed to be given

and the same for all bunches.

3.2. Measurements with a Gap in the Uniform Filling

Measurements of the coupled-bunch instability driven by the vertical resistive wall

impedance have been done in the NSLS-II storage ring. with parameters listed in

Table 3. The measurements have been performed with the operational lattice at

zero linear chromaticity.

Table 3. Parameters for NSLS-II operational lattice.

Parameter Symbol Value Unit

Energy E0 3 GeV

Revolution period T0 2.64 µs
Harmonic number h 1320
Momentum compaction α 0.00037
Synchrotron tune νs 0.007

Horizontal tune νx 33.22
Vertical tune νy 16.26
Transverse damping time τx,y 22.5 ms

Longitudinal damping time τs 11.9 ms
Energy spread σδ 0.00087
Bunch length σt 18 ps

Three different multibunch configurations have been studied, as shown in Fig.2,

consisting of bunch trains filling the first Mg = h− g rf-buckets, where h = 1320 is

the harmonic number and g is the gap in the uniform filling pattern. The rectan-

gles in blue, green and red color represent bunch trains with g = 220, g = 920 and

g = 1220 respectively. The instability thresholds from measurements are determined

from the stability of Beam Position Monitor (BPM) Turn-by-Turn (TbT) data, as

discussed in Fig.3, where the three bunch trains with different gaps g are showns

at two bunch currents: a stable current, sligthly below threshold (left frame), and

an unstable current, sligthly above threshold (rigth frame). The measured instabil-

ity thresholds, with value between the stable and unstable currents, are compared

in Fig.4 with the numerical solution of the eigenvalue equation Eq.(7). The good

agreement between theory and simulations, besides benchmarking the eigenanalysis

for arbitrary fillings, validates the accuracy of the impedance model used. Addi-

tional studies are planned to further corroborate both the theory and impedance

model.
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Fig. 2. Bunch trains filling the first Mg = h− g rf-buckets, where h is the harmonic number and
g is the gap in the uniform filling pattern. The rectangles in blue, green and red color represent

bunch trains with g = 220, g = 920 and g = 1220 respectively.
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Fig. 3. Snapshots of vertical TbT BPM data (different colors corresponding to different BPMs)

taken during measurements of the resistive wall instability threshold for multibunch configurations
with three different gaps g, with the left and right frames showing TbT data sligthly below and
above threshold respectively. From top to bottom, the gaps and average currents are: g = 120, (a)
Iav = 10.2mA and (b) Iav = 11.5mA; g = 1020, (c) Iav = 6.4mA and (d) Iav = 7.4mA; g = 1220,

(e) Iav = 4.0mA and (f) Iav = 4.7mA.
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Fig. 4. Coupled-bunch instability threshold as a function of Mg = h − g, where g is the gap
in the uniform filling pattern. The red line shows the analytical result obtained by equating the
fastest growth time (determined by the eigenvalue with the largest imaginary part), the blue and
magenta dots represent the measurements slightly below and above threshold respectively.


